國立中央大學大氣物理研究所書報討論

Date: 2025/10/31 Location: S1-713

Speaker: Tran Tu Nguyet (陳秀月)

Advisor: Prof. Sheng-Hsiang (Carlo) Wang & Prof. Hien X. Bui

Seasonal Forecast of Two-Meter Temperature and Precipitation in Tanzania: A Hybrid Cluster and Point-by-Point Machine Learning Approach

Abstract

Seasonal climate forecasting is crucial for many socio-economic sectors, particularly agriculture. In Tanzania, agriculture accounts for about 25% of GDP and employs nearly three-quarters of the workforce, making reliable seasonal forecasts of temperature and precipitation an important challenge. Traditional dynamic models are widely used but require high computational resources and often lack regional-scale accuracy. Recently, statistical and machine learning approaches have emerged as promising alternatives. This study introduces finres S2S, a hybrid approach designed to forecast monthly mean 2-meter temperature (2T) and total precipitation (TP) up to six months ahead. The model combines the advantages of both gridpoint-based and cluster-based methods, preserving geographical detail while reducing computational costs. Forecasting was carried out using a Quantile Random Forest Regressor (QRF), which allows probabilistic predictions and avoids overfitting in small-sample conditions. Results show that finres S2S outperforms ECMWF forecasts across Tanzania, with correlation improvements of up to 20-25% and MAAPE reductions of up to a factor of two, particularly over coastal and highland regions. This study demonstrates that machine learning-based hybrid approaches can complement dynamic models by providing accurate, low-cost, and geographically detailed seasonal forecasts.

Keywords

Hybrid Cluster, Quantile Random Forest (QRF)

Reference

Sansonnet, C., Schaeffer, M., & Baarsch, F., 2024: Seasonal Forecast of Two-Meter Temperature and Precipitation in Tanzania: A Hybrid Cluster and Point-by-Point Machine Learning Approach. *Journal of Applied Meteorology and Climatology*, **63**, 1255–1271. https://doi.org/10.1175/JAMC-D-24-0014.1