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Why I am here

• To find my “roots”

• To contribute my Ph.D. and postdoctoral projects 

to interdisciplinary researches in Taiwan

• To develop the greenhouse gas accounting system 

in Taiwan and Asia
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Nuclear Emergency Response System in East Asia (2003)

Kuo-Hsien Chang
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Accounting Carbon Stock in Land Use/Land Cover

Introduction Objective/Methodology Results: study 1

Agriculture <20%
or no growing season

Cropland/grazing 
land mosaic

Cropland >50% Cropland >85% Grazing land >85%Grazing land >50%

Credit: Hugo Ahlenius, UNEP/GRID-Arendal (2007)

• 33% of land surface:  cropland 
• 37% of cropland : active agricultural practice

Results: study 2 Results: study 3 Conclusions/Implications
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Accounting Carbon Stock in Land Use/Land Cover

Introduction Objective/Methodology Results: study 1

Credit: Hugo Ahlenius, UNEP/GRID-Arendal (2007)

• 33% of land surface:  cropland 
• 37% of cropland : active agricultural practice
• 30% of land surface : forest

Results: study 2 Results: study 3 Conclusions/Implications

Credit: FAO (2001)

Closed forest >40% or >5 meters high Open & fragment forest 10~40% Woodland / Shrubland / Bushland

63% of global land 
for carbon stock
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Process-Based Models : DayCENT and CN-CLASS

Model Full name Sector Time-step Soil layer
Functional

type
Event 

scheduler

DayCENT * Daily version of CENTURY Soil & Crop Daily 11 User-defined Yes

CN-CLASS ** C & N coupled Canadian 
Land Surface Scheme Atmosphere Half-hourly 3 4 No

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3 Conclusions/Implications
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Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3

Why DayCENT and CN-CLASS ?

Conclusions/Implications
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Why DayCENT and CN-CLASS ?

• CENTURY (core of DayCENT) is a classic soil model

• CN-CLASS is the Canadian LSM (funding source)
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study site before ?
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Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3

Has anyone used DayCENT and CN-CLASS at my 
study site before ? No.

My Ph.D. work is to focus on :

• Long-term carbon cycle simulation at daily & half-hourly 
time-step

• Improvement of process-based model for agriculture

• Verification of respiration algorithms in CN-CLASS for 
deciduous forests

Why DayCENT and CN-CLASS ?

• CENTURY (core of DayCENT) is a classic soil model

• CN-CLASS is the Canadian LSM (funding source)

Conclusions/Implications
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Research Questions:

• How well is the process-based models able to 
simulate carbon dynamics and how is the uncertainty ?

• What is the effect of agricultural practices and forest 
litterfall on carbon dynamics ?

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3 Conclusions/Implications
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SOCResidues

Carbon Flows in the Models and Field Measurement

Plant Phenology
Tillage Practices
Soil Organic Carbon

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3 Conclusions/Implications
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SOC

GPP

NPP

Ra

Residues

Carbon Flows in the Models and Field Measurement

NPP = GPP – Ra
Plant Phenology
Tillage Practices
Soil Organic Carbon

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3 Conclusions/Implications
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SOC

GPP

NPP

NEP

Ra

Rh

Residues

Carbon Flows in the Models and Field Measurement

NPP = GPP – Ra
Plant Phenology
Tillage Practices
Soil Organic Carbon NEP = NPP – Rh
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Measuring NPP & Crop Phenology

June 2008 @ Elora

Megan’s or Shannon’s leg?
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Measuring Soil Respiration

Conventional Tillage (CT)

Non-tillage (NT)
Soil CO2 Chamber

Soil CO2 Chamber
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Measuring Soil Respiration

Conventional Tillage (CT)

Non-tillage (NT)
Soil CO2 Chamber

Soil CO2 Chamber
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Measuring Ecosystem CO2 Fluxes

Eddy Covariance Flux Tower
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Measuring Ecosystem CO2 Fluxes

Eddy Covariance Flux Tower

Source

Sink
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Modeling Mechanism
Parameterization DayCENT Validation

SOC Spin-up

Weather Forcing
Ecological History

SOC, NPP

Modeling Carbon Cycles in Agriculture

Approaches:

(1) 5000-year SOC equilibrium spin-up

(3) 9-year CT & NT simulation

(2) Best Management Practice schedule & Growing Degree Day module

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3 Conclusions/Implications
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Modeling Mechanism
Parameterization DayCENT Validation

SOC Spin-up

Weather Forcing
Ecological History

SOC, NPP

Modeling Carbon Cycles in Agriculture

Approaches:

(1) 5000-year SOC equilibrium spin-up

(3) 9-year CT & NT simulation

(2) Best Management Practice schedule & Growing Degree Day module

Modeling Mechanism
Parameterization DayCENT Validation

SOC Spin-up
Carbon Dynamics in

Agriculture

Weather Forcing
Ecological History GDD submodel

SOC, NPP

Cultivation Parameter
Management Schedule

ST, SWC, NPP, Grain Yield

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3 Conclusions/Implications
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Grain Yield 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
0

50

100

150

200

250

300

350

400

450

500

Year

G
ra

in
 Y

ie
ld

 (g
 C

 m
−2

)

 

 
CT − obs
CT − sim
NT − obs
NT − sim

soybean

winter
wheat

soybean soybean

corn

corn

corn

cornr2 = 0.86
RMSE = 75.1 g C m−2

n = 16

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3 Conclusions/Implications
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Simulated NEP vs. Eddy Covariance Carbon Flux
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Red Clover Planting

Conclusions/Implications
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Simulated NEP vs. Eddy Covariance Carbon Flux
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Modeling Crop Phenology in CN-CLASS

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3 Conclusions/Implications
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Modeling Crop Phenology in CN-CLASS

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3

Model doesn’t work !!

Conclusions/Implications
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Differences of Modeling between Crops and Forests

Crops differs morphologically and physiologically from forest. 

• Photosynthetic efficiency
• Phenological development
• Carbon allocation

New tree leafNew corn roots and leaf

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3 Conclusions/Implications
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Differences of Modeling between Crops and Forests

Crops differs morphologically and physiologically from forest. 

• Photosynthetic efficiency
• Phenological development
• Carbon allocation

New tree leafNew corn roots and leaf

Affect the climate by modifying 
carbon exchange

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3 Conclusions/Implications
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Improving Crop Phenology in CN-CLASS

Approaches:

(1) Debugging & parameterization for water/energy balance

(3) Model verification with DayCENT and measurements. 

(2) New algorithms for agricultural simulation

Modeling Mechanism
Subroutine Para. CN-CLASS Compile

Validation

Weather Forcing

ST, SWC, LH, SH

Initial Files :
Site info

Photosynthesis
C/N

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3 Conclusions/Implications
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Modeling Mechanism
Subroutine Para. CN-CLASS Compile

Validation
New Algorithms

Verification

Weather Forcing Phenological 
Observation

ST, SWC, LH, SH

DayCENT

Initial Files :
Site info

Photosynthesis
C/N
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Assimilate pool
(Anet)

Partitioning 
(C,N)

Nutrition & Water 
Stress Decomposition

Stem NPP

Canopy fraction

Available C
(Cpost)

Leaf NPP

Biomass 
updates

Turnover

Littering

Photosynthesis

Growth Index

Leaf Area Index Senescence
Leaf allocation

(fpool)

Growth 
respiration

Maintenance 
respiration

Legend
Pre-procedure
Control function
C/N pool

Non-strucutral pool
(Cpool)

Carbon Subroutines in the Original CN-CLASS
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(b) modified model

The original model operated using:
• Global growing season algorithm
• Carbon allocation for forests

Modeling Diagnosis and Modification

The improvement approached by:
• Agricultural schedule
• Crop-specific phenology

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3

Sowing

Conclusions/Implications

Chang (2011) in review
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Importance of Crop Module in Land Surface Model

The comparison suggested that: 
• Our modification improves cropland simulation using CN-CLASS
• Crop phenology needs to be taken account for carbon assimilation
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Modeling Mechanism
Parameterization CN-CLASS

Weather Forcing

ST, SWC, LH, SH, CT, NEP

Improving Respiration Algorithms for Forests

Approaches:

(1) Parameterization and validation for deciduous forests

(3) Examining phenology and component respiration

(2) Improving respiration algorithms based on chamber experiment

Introduction Objective/Methodology Results: study 1 Results: study 2 Results: study 3 Conclusions/Implications
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Modeling Mechanism
Parameterization CN-CLASS

Weather Forcing

ST, SWC, LH, SH, CT, NEP

Improving Respiration Algorithms for Forests

Approaches:

(1) Parameterization and validation for deciduous forests

(3) Examining phenology and component respiration

(2) Improving respiration algorithms based on chamber experiment

Modeling Mechanism
Parameterization CN-CLASS Respiration

Algorithms
Plant Growth

Component Respiration

Weather Forcing Chamber
Experiment

ST, SWC, LH, SH, CT, NEP LAI, Respiration rates
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Forest Study Site: Borden
Flux tower height : 40 m
Canopy height : 22 m

Mixed deciduous forests
~120-year old

Summer 2010 Winter
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Soil CO2 Chamber Experiment in Forests

Fixed soil CO2 chamber

My foot

Chang (2011) in review
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Soil CO2 Chamber Experiment in Forests

Fixed soil CO2 chamber

• What is the CO2 contribution from litterfall ?
• How much litterfall has been decomposed 

and transformed ?My foot

Chang (2011) in review
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Seasonal Dynamics of Surface Litter
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Conclusions

• First modeling study to quantify long-term carbon dynamics for 
my study sites at daily and half-hourly time-step

- DayCENT is capable of simulating daily NEP under active agricultural 
management practices.

- Conventional tillage enhances Rh by 60 to 90 g C m−2 yr−1.
- No-till increases carbon sequestration at a rate of 10.7 g C m−2 yr−1.

• Improving Canadian Land Surface Model for agriculture
- An agricultural schedule and a crop phenology scheme in CN-CLASS 

simulate a reasonable crop growth patten and carbon allocation.
- Our modification improves the accuracy of NEP simulation by 53%.

• Quantifying and gap-filling the annual soil respiration for Borden 
deciduous forests

- Soil CO2 respiration is estimated at 782 g C m−2 yr−1.
➡ Soil organic carbon : 60%; Litterfall/root respiration : 40%.
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Implications
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Implications

1. Simulating biogenic GHGs distribution using the 
GEOS-Chem transport model.

2. Remote sensing data assimilation for LSM. 
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Implications

Environment Canada Carbon Assimilation 
System

(EC−CAS)

1. Simulating biogenic GHGs distribution using the 
GEOS-Chem transport model.

2. Remote sensing data assimilation for LSM. 
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Implications

Environment Canada Carbon Assimilation 
System

(EC−CAS)

1. Simulating biogenic GHGs distribution using the 
GEOS-Chem transport model.

2. Remote sensing data assimilation for LSM. 

3. Analysing stable isotopes in upwind/downwind 
regions using the Bayesian mixing models.

4. Developing stable isotope-enabled STILT long-
range transport model.
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Implications

Environment Canada Carbon Assimilation 
System

(EC−CAS)

1. Simulating biogenic GHGs distribution using the 
GEOS-Chem transport model.

2. Remote sensing data assimilation for LSM. 

Intercontinental Atmospheric Transport of
Anthropogenic Pollutants to the Arctic

(IATAPA)

3. Analysing stable isotopes in upwind/downwind 
regions using the Bayesian mixing models.

4. Developing stable isotope-enabled STILT long-
range transport model.

Introduction Objective/Methodology Results: study 1 Conclusions/ImplicationsResults: study 2 Results: study 3

Monday, August 8, 11



Implications

Environment Canada Carbon Assimilation 
System

(EC−CAS)

1. Simulating biogenic GHGs distribution using the 
GEOS-Chem transport model.

2. Remote sensing data assimilation for LSM. 

Intercontinental Atmospheric Transport of
Anthropogenic Pollutants to the Arctic

(IATAPA)

3. Analysing stable isotopes in upwind/downwind 
regions using the Bayesian mixing models.

4. Developing stable isotope-enabled STILT long-
range transport model.

5. Developing a script-driven modeling procedure 
to stream polygon database and DayCENT.

6. Verifying the modeling procedure in a pilot study 
site using an “incompatible” dataset.
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Implications

Environment Canada Carbon Assimilation 
System

(EC−CAS)

1. Simulating biogenic GHGs distribution using the 
GEOS-Chem transport model.

2. Remote sensing data assimilation for LSM. 

Intercontinental Atmospheric Transport of
Anthropogenic Pollutants to the Arctic

(IATAPA)

3. Analysing stable isotopes in upwind/downwind 
regions using the Bayesian mixing models.

4. Developing stable isotope-enabled STILT long-
range transport model.

AAFC National Carbon and Greenhouse Gas 
Accounting and Verification System

(AAFC−NCGAVS)

5. Developing a script-driven modeling procedure 
to stream polygon database and DayCENT.

6. Verifying the modeling procedure in a pilot study 
site using an “incompatible” dataset.
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Agricultural land: 676000 km2

21x terrestrial area in Taiwan 
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What is NCGAVS ?

- National Carbon and Greenhouse Gas 
Accounting and Verification System

- National quantification of agricultural 
emissions of :
1. Land carbon (C) stock change
- From land use, land-use change, and forestry

2. Nitrous oxide (N2O) emissions
- From nitrogen applied to land in fertilizer, 

manure, and legumes

3. Methane (CH4) emissions
- From livestock and manure storage
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Δ∆C = F × A
Δ∆C : change in soil C stock
F : emission factor = Δ∆Cmax × e-k

A : area of land management practice

Tier 2 Empirical approach

Emission factor Soil C stock

IT to NT
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Tier 3 Process-based modeling approach

- Designing a modeling procedures to bridge 
the Soil Landscape of Canada (SLC) 
polygons and land surface models

- How to quantify C & GHGs using the 
“imperfect” polygons and census datasets 

“imperfect” polygons Gap-filled polygons

missing data

Corn

Soybean
Winter wheat

Hay

1. Kriging

2. Combination
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SLC Polygons

Weather

Site info.

KrigingModel outputs
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Model inputs

Process-Based Models : 
DayCENT
DNDC
CN-CLASS
LPJ
CASA
SiB 

SLC Polygons

Weather

Site info.

Kriging
Management 

Practices
Model outputs

SOC spinup
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Model inputs

Scenario 
combinations

Process-Based Models : 
DayCENT
DNDC
CN-CLASS
LPJ
CASA
SiB 

SLC Polygons

Weather

Site info.

Kriging
Management 

Practices
Model outputs

Scenario 
simulations

SOC spinup

Soil Texture 

Cropping system 
 
Year 1  Year 2  Year 3  Year 4  etc  etc 
Crop  Crop  Crop  Crop 
Manure  Manure  Manure  Manure 
Fertilizer  Fertilizer  Fertilizer  Fertilizer 
Tillage  Tillage  Tillage  Tillage 
 etc   etc   etc   etc 

+ =
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Model inputs

Scenario 
combinations

PCA

Process-Based Models : 
DayCENT
DNDC
CN-CLASS
LPJ
CASA
SiB 

SLC Polygons

Weather

Site info.

Kriging
Management 

Practices
Model outputs

Scenario 
simulations

SOC spinup

Soil Texture 

Cropping system 
 
Year 1  Year 2  Year 3  Year 4  etc  etc 
Crop  Crop  Crop  Crop 
Manure  Manure  Manure  Manure 
Fertilizer  Fertilizer  Fertilizer  Fertilizer 
Tillage  Tillage  Tillage  Tillage 
 etc   etc   etc   etc 

+ =

GHG Emission / Removals

SOC, CO2, N2O, CH4, NPP, Gain Yield, NEP
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