Modeling Carbon Dynamics for Agriculture and Forest Ecosystems Using the Process-Based Models

National Carbon and Greenhouse Gas Accounting and Verification System in Canada

Kuo-Hsien Chang

Ph.D., University of Guelph, Canada NSERC Postdoctoral Fellowship Agriculture and Agri-Food Canada

Why I am here

- To find my "roots"
- To contribute my Ph.D. and postdoctoral projects to interdisciplinary researches in Taiwan
- To develop the greenhouse gas accounting system in Taiwan and Asia

About me ...

- **B.Sc.**, Atmospheric Sciences, Chinese Culture University
- **2001 2003** M.Sc., Atmospheric Physics, National Central University
- **2003 2005** Military service, Naval Meteorological & Oceanographic Office
- **2005 2006** Assistant Researcher, Institute of Environment and Resource
- **2006 2008** Ph.D. Candidate, Ecology, Colorado State University
- **2008 2011** Ph.D., Agrometeorology, University of Guelph
- **2011 2013** Postdoctoral researcher, Agriculture Canada

Rocky Mt. Watershed Project

DOE SOC Project

North Amer. Carbon Project

Nuclear Emergency Response System in East Asia (2003)

Kuo-Hsien Chang Dept. of Atmospheric Sciences, National Central University, Taiwan

Earth at Night More information available at: http://antwrp.gsfc.nasa.gov/apod/ap001127.html Astronomy Picture of the Day 2000 November 27 http://antwrp.gsfc.nasa.gov/apod/astropix.html

Introduction	Objective/Methodology	Results: study l	Results: study 2	Results: study 3	Conclusions/Implications
	000	0000000	000000	00000	00

Accounting Carbon Stock in Land Use/Land Cover

- 33% of land surface: cropland
- 37% of **cropland** : active agricultural practice

63% of global land

for carbon stock

Accounting Carbon Stock in Land Use/Land Cover

- 33% of land surface: cropland
- 37% of **cropland** : active agricultural practice
- 30% of land surface : forest

Introduction	Objective/Methodology	Results: study l	Results: study 2	Results: study 3	Conclusions/Implication
••	000	0000000	000000	00000	00

Model	Full name	Sector	Time-step	Soil layer	Functional type	Event scheduler
DayCENT *	Daily version of CENTURY	Soil & Crop	Daily		User-defined	Yes
CN-CLASS **	C & N coupled Canadian Land Surface Scheme	Atmosphere	Half-hourly	3	4	No

Introduction	Objective/Methodology	Results: study l	Results: study 2	Results: study 3	Conclusions/Implication
••	000	00000000	000000	00000	00
••	000	00000000	000000	00000	00

Model	Full name	Sector	Time-step	Soil layer	Functional type	Event scheduler
DayCENT *	Daily version of CENTURY	Soil & Crop	Daily		User-defined	Yes
CN-CLASS **	C & N coupled Canadian Land Surface Scheme	Atmosphere	Half-hourly	3	4	No

Introduction Obj	jective/Methodology	Results: study l	Results: study 2	Results: study 3	Conclusions/Implication
••	0	0000000	000000	00000	00

Model	Full name	Sector	Time-step	Soil layer	Functional type	Event scheduler
DayCENT *	Daily version of CENTURY	Soil & Crop	Daily		User-defined	Yes

Introduction	Objective/Methodology	Results: study l	Results: study 2	Results: study 3	Conclusions/Implication
••	000	00000000	000000	00000	00
••	000	00000000	000000	00000	00

Model	Full name	Sector	Time-step	Soil layer	Functional type	Event scheduler
DayCENT *	Daily version of CENTURY	Soil & Crop	Daily		User-defined	Yes
CN-CLASS **	C & N coupled Canadian Land Surface Scheme	Atmosphere	Half-hourly	3	4	No

Introduction O	bjective/Methodology	Results: study l	Results: study 2	Results: study 3	Conclusions/Implication
••	000	0000000	000000	00000	00

Model	Full name	Sector	Time-step	Soil layer	Functional type	Event scheduler
DayCENT *	Daily version of CENTURY	Soil & Crop	Daily		User-defined	Yes
CN-CLASS **	C & N coupled Canadian Land Surface Scheme	Atmosphere	Half-hourly	3	4	No

OO OOOOOOO OOOOOO OOOOOO OOOOOO OO OO	Introduction	Objective/Methodology	Results: study l	Results: study 2	Results: study 3	Conclusions/Implication
		000	0000000	000000	00000	00

Model	Full name	Sector	Time-step	Soil layer	Functional type	Event scheduler
DayCENT *	Daily version of CENTURY	Soil & Crop	X Daily		O User-defined	Yes
CN-CLASS **	C & N coupled Canadian Land Surface Scheme	A tmosphere	O Half-hourly	3	4	No

Introduction	Objective/Methodology	Results: study l	Results: study 2	Results: study 3	Conclusions/Implications
000	•00	0000000	000000	00000	00

- CENTURY (core of DayCENT) is a classic soil model
- CN-CLASS is the Canadian LSM (funding source)

- CENTURY (core of DayCENT) is a classic soil model
- CN-CLASS is the Canadian LSM (funding source)

Has anyone used DayCENT and CN-CLASS at my study site before ?

- CENTURY (core of DayCENT) is a classic soil model
- CN-CLASS is the Canadian LSM (funding source)

Has anyone used DayCENT and CN-CLASS at my study site before ? No.

- CENTURY (core of DayCENT) is a classic soil model
- CN-CLASS is the Canadian LSM (funding source)

Has anyone used DayCENT and CN-CLASS at my study site before ? No.

My Ph.D. work is to focus on :

- Long-term carbon cycle simulation at <u>daily & half-hourly</u> <u>time-step</u>
- Improvement of process-based model for <u>agriculture</u>
- Verification of respiration algorithms in CN-CLASS for <u>deciduous forests</u>

Introduction	Objective/Methodology	Results: study l	Results: study 2	Results: study 3	Conclusions/Implications
000	$\bullet \bullet \bullet \bullet$	0000000	000000	00000	00

Research Questions:

- How well is the process-based models able to simulate carbon dynamics and how is the uncertainty ?
- What is the effect of agricultural practices and forest litterfall on carbon dynamics ?

IntroductionObjective/Methodology
000Results: study I
0000000Results: study 2
000000Results: study 3
000000Conclusions/Implications0000000000000000000000000000000000000

Carbon Flows in the Models and Field Measurement

Plant Phenology Tillage Practices Soil Organic Carbon

Carbon Flows in the Models and Field Measurement

Plant Phenology Tillage Practices Soil Organic Carbon

Carbon Flows in the Models and Field Measurement

Plant Phenology Tillage Practices Soil Organic Carbon

$\mathbf{NPP} = \mathbf{GPP} - \mathbf{R}_{a}$ $\mathbf{NEP} = \mathbf{NPP} - \mathbf{R}_{h}$

Measuring NPP & Crop Phenology

Measuring Soil Respiration

Soil CO₂ Chamber

Conventional Tillage (CT)

Measuring Soil Respiration

Conventional Tillage (CT) Soil CO₂ Chamber Non-tillage (NT) Soil CO2 Chamber

Measuring Soil Respiration

Conventional Tillage (CT) Soil CO₂ Chamber Non-tillage (NT) Soil CO2 Chamber

Measuring Ecosystem CO₂ Fluxes

Measuring Ecosystem CO₂ Fluxes

Modeling Carbon Cycles in Agriculture

Modeling Carbon Cycles in Agriculture

Approaches:

- (1) 5000-year SOC equilibrium spin-up
- (2) Best Management Practice schedule & Growing Degree Day module
- (3) 9-year CT & NT simulation

Modeling Carbon Cycles in Agriculture

Approaches:

- (1) 5000-year SOC equilibrium spin-up
- (2) Best Management Practice schedule & Growing Degree Day module
- (3) 9-year CT & NT simulation

Introduction	Objective/Methodology	Results: study l	Results: study 2	Results: study 3	Conclusions/Implications
000	000	000000	000000	00000	00

Grain Yield

Simulated NEP vs. Eddy Covariance Carbon Flux

Simulated NEP vs. Eddy Covariance Carbon Flux

Simulated NEP vs. Eddy Covariance Carbon Flux

Summary : Tillage Effect on NPP/Rh/NEP

IntroductionObjective/MethodologyResults: study I000000000

Results: study 2 000000

y 2 Results: study 3 00000

ctudy 3 Conclusions/Implications

Long-term SOC dynamics

IntroductionObjective/MethodologyResults: study I000000000

Results: study 2

2 Results: study 3

ly 3 Conclusions/Implications

Long-term SOC dynamics

Tillage effect on Slow & Passive SOC Dynamics

Monday, August 8, 11

Monday, August 8, 11

Modeling Crop Phenology in CN-CLASS

Modeling Crop Phenology in CN-CLASS

Model doesn't work !!

A model-data intercomparison of CO₂ exchange across North America: Results from the North American Carbon Program site synthesis

Christopher R. Schwalm,¹ Christopher A. Williams,¹ Kevin Schaefer,² Ryan Anderson,³ M. Altaf Arain,⁴ Ian Baker,⁵ Alan Barr,⁶ T. Andrew Black,⁷ Guangsheng Chen,⁸ Jing Ming Chen,⁹ Philippe Ciais,¹⁰ Kenneth J. Davis,¹¹ Ankur Desai,¹² Michael Dietze,¹³ Danilo Dragoni,¹⁴ Marc L. Fischer,¹⁵ Lawrence B. Flanagan,¹⁶ Robert Grant,¹⁷ Lianhong Gu,¹⁸ David Hollinger,¹⁹ R. César Izaurralde,²⁰ Chris Kucharik,²¹ Peter Lafleur,²² Beverly E. Law,²³ Longhui Li,¹⁰ Zhengpeng Li,²⁴ Shuguang Liu,²⁵ Erandathie Lokupitiya,⁵ Yiqi Luo,²⁶ Siyan Ma,²⁷ Hank Margolis,²⁸ Roser Matamala,²⁹ Harry McCaughey,³⁰ Russell K. Monson,³¹ Walter C. Oechel,³² Changhui Peng,³³ Benjamin Poulter,³⁴ David T. Price,³⁵ Dan M. Riciutto,¹⁸ William Riley,³⁶ Alok Kumar Sahoo,³⁷ Michael Sprintsin,⁹ Jianfeng Sun,³³ Hanqin Tian,⁸ Christina Tonitto,³⁸ Hans Verbeeck,³⁹ and Shashi B. Verma⁴⁰

Received 23 November 2009; revised 23 July 2010; accepted 29 July 2010; published 9 December 2010.

A model-data intercomparison of CO₂ exchange across North America: Results from the <u>North American Carbon Program site</u> synthesis

Christopher R. Schwalm,¹ Christopher A. Williams,¹ Kevin Schaefer,² Ryan Anderson,³ M. Altaf Arain,⁴ Ian Baker,⁵ Alan Barr,⁶ T. Andrew Black,⁷ Guangsheng Chen,⁸ Jing Ming Chen,⁹ Philippe Ciais,¹⁰ Kenneth J. Davis,¹¹ Ankur Desai,¹² Michael Dietze,¹³ Danilo Dragoni,¹⁴ Marc L. Fischer,¹⁵ Lawrence B. Flanagan,¹⁶ Robert Grant,¹⁷ Lianhong Gu,¹⁸ David Hollinger,¹⁹ R. César Izaurralde,²⁰ Chris Kucharik,²¹ Peter Lafleur,²² Beverly E. Law,²³ Longhui Li,¹⁰ Zhengpeng Li,²⁴ Shuguang Liu,²⁵ Erandathie Lokupitiya,⁵ Yiqi Luo,²⁶ Siyan Ma,²⁷ Hank Margolis,²⁸ Roser Matamala,²⁹ Harry McCaughey,³⁰ Russell K. Monson,³¹ Walter C. Oechel,³² Changhui Peng,³³ Benjamin Poulter,³⁴ David T. Price,³⁵ Dan M. Riciutto,¹⁸ William Riley,³⁶ Alok Kumar Sahoo,³⁷ Michael Sprintsin,⁹ Jianfeng Sun,³³ Hanqin Tian,⁸ Christina Tonitto,³⁸ Hans Verbeeck,³⁹ and Shashi B. Verma⁴⁰

Received 23 November 2009; revised 23 July 2010; accepted 29 July 2010; published 9 December 2010.

Model Skill Metrics For All 21 Models – NEP Simulation

Monday, August 8, 11

Model Skill Metrics For All 21 Models – NEP Simulation Schwalm et al. (2010)

Monday, August 8, 11

Differences of Modeling between Crops and Forests

Crops differs morphologically and physiologically from forest.

- Photosynthetic efficiency
- Phenological development
- Carbon allocation

New corn roots and leaf

New tree leaf

Differences of Modeling between Crops and Forests

Crops differs morphologically and physiologically from forest.

- Photosynthetic efficiency
- Phenological development
- Carbon allocation

New corn roots and leaf

New tree leaf

Affect the climate by modifying carbon exchange

Improving Crop Phenology in CN-CLASS

- (I) Debugging & parameterization for water/energy balance
- (2) New algorithms for agricultural simulation
- (3) Model verification with DayCENT and measurements.

Improving Crop Phenology in CN-CLASS

- (I) Debugging & parameterization for water/energy balance
- (2) New algorithms for agricultural simulation
- (3) Model verification with DayCENT and measurements.

Improving Crop Phenology in CN-CLASS

- (I) Debugging & parameterization for water/energy balance
- (2) New algorithms for agricultural simulation
- (3) Model verification with DayCENT and measurements.

Carbon Subroutines in the Original CN-CLASS

Carbon Subroutines in the Original CN-CLASS Modified

Carbon Subroutines in the Original CN-CLASS Modified

Introduction	Objective/Methodology	Results: study l	Results: study 2	Results: study 3	Conclusions/Implications
000	000	00000000		00000	00

14 Days NEP Tendency

	Introduction	Objective/Methodology OOO	Results: study I 00000000	Results: study 2	Results: study 3 00000	Conclusions/Implications
--	--------------	-------------------------------------	------------------------------	------------------	---------------------------	---------------------------------

14 Days NEP Tendency

Importance of Crop Module in Land Surface Model

The comparison suggested that:

- Our modification improves cropland simulation using CN-CLASS
- Crop phenology needs to be taken account for carbon assimilation

Improving Respiration Algorithms for Forests

- (1) Parameterization and validation for deciduous forests
- (2) Improving respiration algorithms based on chamber experiment
- (3) Examining phenology and component respiration

Improving Respiration Algorithms for Forests

- (I) Parameterization and validation for deciduous forests
- (2) Improving respiration algorithms based on chamber experiment
- (3) Examining phenology and component respiration

Improving Respiration Algorithms for Forests

- (I) Parameterization and validation for deciduous forests
- (2) Improving respiration algorithms based on chamber experiment
- (3) Examining phenology and component respiration

IntroductionObjective/MethodologyOOOOOO

Results: study I

Results: study 2 000000 Results: study 3

Conclusions/Implications

Forest Study Site: Borden

Flux tower height : 40 m Canopy height : 22 m

Mixed deciduous forests ~I20-year old

Soil CO₂ Chamber Experiment in Forests

Fixed soil CO₂ chamber

My foot

Chang (2011) in review

Monday, August 8, 11

Soil CO₂ Chamber Experiment in Forests

Fixed soil CO₂ chamber

My foot

- What is the CO₂ contribution from litterfall ?
- How much litterfall has been decomposed and transformed ?

Chang (2011) in review

Monday, August 8, 11

Seasonal Dynamics of Surface Litter

Seasonal Dynamics of Surface Litter

Surface Litter Partitioning

Soil Respiration Partitioning

Soil Respiration Partitioning

Introduction O	Objective/Methodology	Results: study l	Results: study 2	Results: study 3	Conclusions/Implications
000 0	000	0000000	000000	00000	•0

Conclusions

- First modeling study to quantify long-term carbon dynamics for my study sites at daily and half-hourly time-step
 - DayCENT is capable of simulating daily NEP under active agricultural management practices.
 - Conventional tillage enhances R_h by 60 to 90 g C m⁻² yr⁻¹.
 - No-till increases carbon sequestration at a rate of 10.7 g C m⁻² yr⁻¹.
- Improving Canadian Land Surface Model for agriculture
 - An agricultural schedule and a crop phenology scheme in CN-CLASS simulate a reasonable crop growth patten and carbon allocation.
 - Our modification improves the accuracy of NEP simulation by 53%.
- Quantifying and gap-filling the annual soil respiration for Borden deciduous forests
 - Soil CO₂ respiration is estimated at 782 g C m⁻² yr⁻¹.
 - Soil organic carbon : 60%; Litterfall/root respiration : 40%.

Introduction	Objective/Methodology	Results: study l	Results: study 2	Results: study 3	Conclusions/Implications
000	000	0000000	000000	00000	••

Implications

Introduction	Objective/Methodology	Results: study l	Results: study 2	Results: study 3
000	000	0000000	000000	00000

Implications

- I. Simulating biogenic GHGs distribution using the GEOS-Chem transport model.
- 2. Remote sensing data assimilation for LSM.
| Introduction | Objective/Methodology
000 | Results: study I
00000000 | Results: study 2 | Results: study 3 | Conclusions/Implications |
|--|---|----------------------------------|------------------|--------------------------------------|--------------------------|
| Implic | cations | | | | |
| I. Simulating
GEOS-Ch
2. Remote se | biogenic GHGs distr
em transport model.
ensing data assimilatio | ibution using the
on for LSM. | Environmer | nt Canada Carb
System
(EC–CAS) | on Assimilation |
| | | | | | |
| | | | | | |
| | | | | | |

Introduction 000	Objective/Methodology 000	Results: study I 00000000	Results: study 2 000000	Results: study 3 00000	Conclusions/Implications
Implic	ations				
I. Simulating GEOS-Cho 2. Remote se	biogenic GHGs distri em transport model. ensing data assimilatio	bution using the n for LSM.	Environmen	nt Canada Carb System (EC–CAS)	on Assimilation
 Analysing a regions us Developination range transmission 	stable isotopes in upv ing the Bayesian mixir g stable isotope-enabl sport model.	vind/downwind ng models. led STILT long-			

Introduction 000	Objective/Methodology 000	Results: study I 00000000	Results: study 2 000000	Results: study 3 00000	Conclusions/Implications
Implic	ations				
I. Simulating GEOS-Che 2. Remote se	biogenic GHGs distri em transport model. ensing data assimilation	bution using the n for LSM.	Environmen	it Canada Carbo System (EC–CAS)	on Assimilation
 Analysing s regions usi Developing range tran 	stable isotopes in upw ing the Bayesian mixin g stable isotope-enabl sport model.	vind/downwind og models. ed STILT long-	Intercontine Anthropc	ntal Atmospher ogenic Pollutant (IATAPA)	ric Transport of s to the Arctic

Introduction	Objective/Methodology 000	Results: study I 00000000	Results: study 2 000000	Results: study 3	Conclusions/Implications
Implie	cations				
 Simulating GEOS-Ch Remote set 	g biogenic GHGs distri Iem transport model. ensing data assimilatio	ibution using the n for LSM.	Environmer	nt Canada Carb System (EC–CAS)	on Assimilation
 Analysing regions us Developing range trans 	stable isotopes in upv sing the Bayesian mixir ng stable isotope-enab nsport model.	vind/downwind ng models. led STILT long-	Intercontine Anthropo	ental Atmosphe ogenic Pollutant (IATAPA)	ric Transport of as to the Arctic
 Developin to stream Verifying t site using 	ng a script-driven mod polygon database and the modeling procedur an "incompatible" data	eling procedure DayCENT. re in a pilot stud aset.	Y		

Monday, August 8, 11

Introduction 000	Objective/Methodology 000	Results: study I 00000000	Results: study 2 000000	Results: study 3 00000	Conclusions/Implications
Implic	ations				
 Simulating GEOS-Che Remote se 	biogenic GHGs distri em transport model. nsing data assimilatio	bution using the n for LSM.	Environmer	nt Canada Carb System (EC–CAS)	on Assimilation
 Analysing s regions usi Developing range trans 	stable isotopes in upw ng the Bayesian mixir g stable isotope-enabl sport model.	vind/downwind Ig models. ed STILT long-	Intercontine Anthropo	ental Atmosphe ogenic Pollutant (IATAPA)	ric Transport of ts to the Arctic
 Developing to stream Verifying the site using a 	g a script-driven mode polygon database and ne modeling procedur n ''incompatible" data	eling procedure DayCENT. re in a pilot study aset.	AAFC Nation Accour	nal Carbon and nting and Verific (AAFC–NCGA	Greenhouse Gas ation System NS)

What is NCGAVS ?

- National Carbon and Greenhouse Gas Accounting and Verification System
- National quantification of agricultural emissions of :
 - 1. Land carbon (C) stock change
 - From land use, land-use change, and forestry
 - 2. Nitrous oxide (N_20) emissions
 - From nitrogen applied to land in fertilizer, manure, and legumes
 - 3. Methane (CH4) emissions
 - From livestock and manure storage

Tier 2 Empirical approach

 $\Delta C = F \times A$

- ΔC : change in soil C stock
- F : emission factor = $\Delta C_{max} \times e^{-k}$
- A : area of land management practice

Emission factor

Soil C stock

Tier 3 Process-based modeling approach

- Designing a modeling procedures to bridge the Soil Landscape of Canada (SLC)
 polygons and land surface models
- How to quantify C & GHGs using the "imperfect" polygons and census datasets

Monday, August 8, 11

Acknowledgment

Dr. Jon Warland: kindly financial support and supervise Dr. Paul Bartlett: great help on paper proof-reading and model coding Dr. Altaf Arain: generously sharing the code and provide insightful suggestion Dr. Fengming Yuan: provides very helpful guidance on coding and modeling operation Dr. Paul Voroney: helps me a lot to make a smooth transition on interdisciplinary researches Dr. Claudia Wagner-Riddle: thank you for academic support and ERS research data Dr. Diana Verseghy, Environment Canada: generously sharing the LSM code Dr. Dennis Ojima: establish the foundation in ecology & networking Dr. Neal Scott: huge effort in reviewing my work

Acknowledgment

Dr. Jon Warland: kindly financial support and supervise Dr. Paul Bartlett: great help on paper proof-reading and model coding Dr. Altaf Arain: generously sharing the code and provide insightful suggestion Dr. Fengming Yuan: provides very helpful guidance on coding and modeling operation Dr. Paul Voroney: helps me a lot to make a smooth transition on interdisciplinary researches Dr. Claudia Wagner-Riddle: thank you for academic support and ERS research data Dr. Diana Verseghy, Environment Canada: generously sharing the LSM code Dr. Dennis Ojima: establish the foundation in ecology & networking Dr. Neal Scott: huge effort in reviewing my work

My Special Thank You Goes To:

Daily version of CENTURY (DayCENT): http://www.nrel.colostate.edu/projects/daycent
 DeNitrification-DeComposition (DNDC): http://www.dndc.sr.unh.edu/
 Canadian Land Surface Model (CN-CLASS): http://www.geog.mcgill.ca/CGC3M
 Lund-Potsdam-Jena Model (LPJ): http://www.pik-potsdam.de/research/projects/lpjweb
 Carnegie Ames Stanford Approach (CASA): http://geo.arc.nasa.gov/sge/casa
 Simple Biosphere Model (SiB): http://www.atmos.colostate.edu/sib

Contact: kchang@uoguelph.ca